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1. INTRODUCTION
Software Defined Networking (SDN) introduces a logically

centralized control plane to run diverse management appli-
cations. In practice, a logically centralized control plane is
realized using multiple controllers for scalability, reliability,
and availability reasons. In fact, for various current and
future networks of interest, it is practically infeasible to at-
tempt a physically centralized SDN system. As SDN gains
popularity, it is important to secure the SDN infrastructure
to be resilient to potential attacks.

In SDN, controllers can become high-value and attractive
targets for an adversary for the following reasons. First,
controllers are sinks of information collected from different
switches. This includes network topology and flow-counter
values. Such information can be privacy sensitive. For exam-
ple, an organization may wish to protect its internal network
topology or hide what type of traffic is being routed through
its network. In addition, privacy policies may prohibit infor-
mation from flowing between one part of the organizational
network to another. Second, controllers run full-fledged soft-
ware stacks including an operating system and management
applications. Therefore, they may expose a much larger
attack surface than switches. Moreover, threats may arise
from multiple sources. In addition to software vulnerabilities
that may exist in the controller software stack, malicious
insiders who have privileged access to the controllers may
leak sensitive information or sabotage network operations.
For example, the network operator wants to make sure that
traffic flow counters in the controllers stay untouched by an
adversary. Manipulation of these counters could allow DDoS
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attacks on hosts go undetected. As another example, the
network operator wants to protect network topology infor-
mation from adversaries in order to protect against DDoS
attacks.

We borrow techniques from Multi-Party Computation
(SMPC) [3] in cryptography to provide provable security
guarantees against such threats. Given recent advances in
making SMPC faster [2], we find it suitable to use multi-party
computation to achieve the following security goals in SDNs:
(i) When a subset of the controllers are compromised, no
sensitive information such as network topologies are leaked
(ii) The network’s resilience to controller failure is improved.
More formally, an operator should support guarantees on
fault tolerant computation whereby for a threshold k, even
if k − 1 controllers become completely non-functional, the
remaining controllers can execute the computation correctly.

2. SMPC FRAMEWORK

2.1 Background
Imagine a situation in which a group of mutually distrustful

individuals are required to cooperate in order to achieve a
common objective. Specifically, consider the case in which
each individual possesses some private data and the group
collectively attempts to

1. Compute some function that may depend on the private
inputs of all the participating parties

2. Avoid revealing any individual data other that what
may be deduced from the outcome of the computation.

SMPC is a field of cryptography that deals with the develop-
ment of efficient protocols and algorithms to achieve these
objectives.

Let us make this notion more precise. We have n parties,
C1, . . . , Cn, each of whom possesses a private input. Let
the input of Ci be denoted by xi. Our goal is to compute
y = f (x1, . . . , xn) such that Ci learns only y and is ignorant
about {xj | j 6= i}. It is known that there exists protocols
that allow us to compute any arbitrary function f in this
manner, provided we assume that not more than a certain
fraction of the parties collude. Note that each party has an
equivalent part to play in computing y. In other words, we
discard the solution where the input set {xi | i = 1, . . . , n}
is sent to a trusted third party that computes y and sends it
to {C1, . . . , Cn}.
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Figure 1: SMPC in SDNs

2.2 SMPC Design in SDN
The architecture of SDNs lends itself naturally to secure

computation. The data plane switches assume the role of
input providers to the controllers, where the secure computa-
tion is carried out. In our model, each input is divided into
different parts (or shares) using an appropriate secret-sharing
scheme. This division of inputs to different shares is done
at the switches. As shown in figure 1, each switch has a
component named dealer that collects the required input val-
ues and prepares them to be split across multiple controllers.
Each share is given to a different controller. Similarly, each
controller has a component named party that collects such
data from the switches and engages in SMPC with other
controllers. For example, consider the simple case where we
have two controllers. One way of performing secure compu-
tation over them is by using Yao’s garbled circuits [3]. In
this model, a controller (say, 1) has a generator module that
creates a boolean circuit that encodes his input and sends
the same to controller 2. Controller 2 evaluates this boolean
circuit using his input, thereby generating the result of our
chosen computation, which is then published. The efficiency
of this approach depends on our data and the function that
we are trying to compute. We base the implementation of
our algorithms in an efficient framework for running garbled
circuits known as fastGC [2].

We now describe the challenges involved in enabling se-
cure computation in SDNs. Firstly, any generally applicable
SMPC framework for SDNs must address the issue of de-
ciding whether an application is admissible for computation.
SMPC only guarantees the execution of any given applica-
tion in a secure manner and is conspicuously non-committal
about what may be released by the results. Consider the
trivial example of an identity function which simply pub-
lishes its inputs. The input, say topology information, to any
application that realizes this design is inherently insecure.
While the above may be an extreme example, it highlights
the need for analysis that aids in deciding the admissibility
of a function. In this paper, we assume the validity of our
chosen applications.

Another challenge pertains to the handling of network
state. Controllers are often heterogeneous in nature. We
may have a cluster of servers that we trust more. Some of
them may have more computational power than the others.
Consequently, we may desire to pre-assign the division of
state amongst controllers so that we extract the maximum

efficiency. Details on how one might go about doing this
are a subject for future discussion. For the purposes of this
paper, we make the simplifying assumption that all state is
handled equally by the controllers.

Finally, we have the constraints imposed by performance
requirements. The benefits of secure computation are pur-
chased by sacrificing some performance. The key question
here is how much improvement can we make in this trade off
between security and performance? SMPC algorithms that
can handle a large class of functions tend to trade-off more
performance to achieve their generality. It follows that ap-
plications that are of sufficient importance to our network or
those that have strict latency requirements may warrant the
development of custom algorithms that exploit the structure
inherent in the problem to achieve the desired performance.
Keeping that in mind, we posit that SMPC is generally bet-
ter suited for applications that allow for offline processing of
data as opposed to those that demand results in real time.

3. CASE STUDY: HH DETECTION
In this section, we describe our experimental setup and

analyse the results obtained on implementing a prototype
application, namely, heavy hitter (HH) detection. We define
heavy hitters as the top k IP addresses that sent the maxi-
mum number of packets, for each window of a certain size
(say t). One challenge we needed to overcome is to design
the algorithm so as to ensure that each operation is data
oblivious. In other words, we need to ensure that the memory
access patterns of our algorithm does not reveal anything
regarding the input data.

The algorithm has two main parts. Firstly, flow table
entries from different switches need to be merged at the
controllers. Secondly, the merged list is sorted to identify
the heavy hitters. To ensure the data-oblivious property,
both parts are realized using an oblivious sorting algorithm,
namely, randomized shell sort [1]. Specifically, the flow data
from all switches are concatenated to form a list that is sorted
according their IP. The entries with the same IP are now
clustered together which allows us to merge all of them in
a single pass. This is followed by sorting the data by their
flow table entries, which identifies the heavy hitters.

The above algorithm was implemented on the fastGC
framework installed on a workstation running an Intel i7-
3770 processor. The flow table entries which form the input
to the controllers were taken from the CAIDA data set. For
4096 flow table entries, the runtime of our application was
around 13.3 minutes. We plan to further improve the runtime
with optimizations such as updates to the fastGC framework.
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